Sabtu, 14 Desember 2019

Materi Matematika SMA Kelas X Trigonometri


TRIGONOMETRI


A. Ukuran Sudut
1. Ukuran Derajat
Besar sudut dalam satu putaran adalah 360°. Berarti 1°= 1/360 putaran. Ukuran sudut yang lebih kecil dari derajat adalah menit ( ‘ ) dan detik ( “ ).
Hubungan ukuran sudut menit, detik, dan derajat adalah:

2. Ukuran Radian
Satu radian adalah besar sudut pusat busur lingkaran yang panjangnya sama dengan jari-jari.

3. Hubungan Derajat dengan Radian
Untuk mengubah sudut sebesar 𝛉 ke dalam satuan radian, menggunakan rumus:

Dan untuk mengubah sudut sebesar X radian ke dalam satuan derajat, menggunakan rumus:

B. Perbandingan Trigonometri pada Segitiga Siku-Siku
Perhatikanlah gambar berikut!

Jika dipandang dari sudut 𝛉, maka sisi BC disebut sisi depan, sisi AB disebut sisi samping, dan sisi AC disebut sisi miring.
Jika sisi AB = x, sisi BC = y, dan sisi AC = r, maka


C. Perbandingan Trigonometri Sudut Berelasi
Dalam satu putaran, yaitu 360°, sudut dibagi menjadi empat relasi, yaitu:
1. Kuadran I            : 0°≤ α ≤ 90°
2. Kuadran II          : 90° < α ≤ 180°
3. Kuadran III        : 180° < α ≤ 270°
4. Kuadran IV         : 270° < α ≤ 360°
Perhatikan gambar berikut!


1. Perbandingan Trigonometri Sudut di Kuadran I

Pada ∆ AOC, berlaku:

Pada ∆ BOC, berlaku:

2. Perbandingan Trigonometri Pada Sudut Kuadran II




Pada ∆ AOC, berlaku: α = 180°- 𝛉


3. Perbandingan Trigonometri Pada Sudut Kuadran III


Pada ∆ AOC berlaku:  AOP = α

4. Perbandingan Trigonometri Pada Sudut Kadran IV
sin (360° - 𝞪) = - sin 𝞪
cos (360° - 𝞪) = cos 𝞪
tan (360° - 𝞪) = - tan 𝞪
cosec (360° - 𝞪) = - cosec 𝞪
sec (360° - 𝞪) = sec 𝞪
cotan (360° - 𝞪) = - cotan 𝞪

5. Perbandingan Trigonometri Untuk Sudut Diatas 360° atau Sudut Negatif
a. Perbandingan Trigonometri Untuk Sudut Diatas 360°
Sin (k × 360° + 𝞪) = sin 𝞪
Cos (k × 360° + 𝞪) = cos 𝞪
tan (k × 360° + 𝞪) = tan 𝞪
cosec (k × 360° + 𝞪) = cosec 𝞪
sec (k × 360° + 𝞪) = sec 𝞪
cotan (k × 360° + 𝞪) = cotan 𝞪
Keterangan:
k = banyaknya putaran, dengan nilai k adalah bilangan bulat positif.

b. Perbandingan Trigonometri Sudut Negatif
Sin (- 𝞪) = -sin 𝞪
Cos (-𝞪) = cos 𝞪
tan (-𝞪)  = -tan 𝞪
cosec (-𝞪) = -cosec 𝞪
sec (-𝞪) = sec 𝞪
cotan (-𝞪) = -cotan 𝞪

D. Persamaan Trigonometri sin x = sin α, cos x = cos α, dan tan x = tan α
1. Jika sin x = sin α, maka x = α + k . 360° atau x = (180° - α) + k . 360°
2. Jika cos x = sin α, maka x = α + k . 360° atau x = (360° - α) + k . 360° = -α + k . 360°
3. Jika tan x = tan α, maka x = α + k . 180°

E. Identitas Trigonometri
1. Rumus Dasar

2. Menentukan Identitas Trigonometri
a. Ubah bentuk ruas kiri hingga sama dengan bentuk ruas kanan.
b. Ubah bentuk ruas kanan hingga sama dengan bentuk tuas kiri.
c. Kedua ruas diubah hingga didapat bentuk baru yang sama.

F. Trigonometri Pada Segitiga Sembarang
1. Aturan Sinus

Rumus:

2. Aturan Cosinus

Rumus:
a= b2+c2 - 2bc cos 𝞪
b2 = a2+c2 - 2ac cos 𝞫
c2 = a2+b2 - 2ab cos 𝞬



Tidak ada komentar:

Posting Komentar